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Abstract
Results of a review of computational aspects of Geant4 electromagnetic package and related

code are presented.
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1 Introduction

1.1 Intended audience

This report is intended to be read by the authors and maintainers of the electromagnetic
code of Geant4 as well as by other members of the Geant4 collaboration who may benefit
from some of the more general comments pertinent to other Geant4 areas.

1.2 Scope of review

The electromagnetic (EM) processes package has a relatively high computational signifi-
cance (CPU cost as a fraction of the total CPU time of a job) in most Geant4 application
domains, including the detector simulation of HEP experiments. Some of the functions of
the EM package are top contributors in CPU time profiles, placing in the top 10 most time-
consuming by self time (considering only the exclusive time spent in the function itself,
not its callees.) For these reasons it was decided to inspect the package with the main
goal to assess if there are improvements which can be found to make it computationally
more efficient.

The review concentrated on the most costly EM classes and functions. In some cases,
other classes or functions which were heavily used by the EM code were also reviewed.

It was also considered that Geant4 code needs to be performant both in sequential and
Multi-Threading modes and as easy as possible to read and maintain.

1.3 Review time-line and reviewed versions of Geant4

The review started in June of 2013 looking at a release near to the Geant4 10.0-beta
public development release - in particular at Geant4 v9.6.r07 reference release which
included some fixes, some consolidation and a small number of other improvements on
top of 10.0-beta . It was effectively completed in June 2014 after Geant4 v10.1-beta was
released.

Most comments of the review pertain to Geant4 v10. Intermediate review results were
presented at the Geant4 Collaboration Meeting in September 2013 and at a joint meeting
of the EM groups in March 2014. The code authors were being informed of the important
findings with a significant computational impact as they were discovered so that they
could be incorporated in the code development even before this report was completed.

1.4 Outline

In the next chapter (2), we identify the classes under review, in the EM package and
beyond, and explain their place in the hierarchy of classes in the package. In chapter 3
we identify the environment and tools used to measure the contribution of functions,
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and the characteristics reported by these tools. In chapter 4 we discuss general issues,
common between different functions, in particular the use of pseudo-random number
generators. Chapter 5 contains the specific observations about different functions, in
particular the most time consuming functions of key classes. Chapter 6 provides a
summary of the measurements using the TAU [1] profiling tool, and our analysis of these
results. Chapter 7 contains our observations on inlining, compiler optimization, and
observations on the stability of code modifications. General recommendations are in
chapter 8 and a summary in chapter 9. We also provide some suggestions for further
review in the final chapter, number 10.

We note that the chapters 5 and 6 are quite detailed in analysis and recommendations
and are intended for the code maintainers, whereas readers interested in more general
recommendations and summary should read chapters 8 and 9.

2 Classes related to Geant4 EM Code

2.1 List of classes and functions under review

Table 1 shows the initial list of classes and functions which were to be reviewed as well
as those which were added later. The list was obtained by profiling the SimplifiedCalo
application as used in the official Geant4 Benchmarking and Profiling [2] (also see
Chapter 3). This application was chosen as its geometry is simple, and the contributions
of EM functions are larger, more stable and thus easier to measure.

2.2 The G4VProcess and G4VEMModel class hierarchies

Many of the classes in the table 1 belong to the Geant4 G4VProcess and G4VEMModel
class hierarchies as shown in figures 1 and 2.

2.3 Other classes and functions

The G4PhysicsVector and G4Physics2DVector container classes and their descendants,
although of a more general nature, are heavily used in the EM code and therefore were
reviewed as well. Similarly, G4Poisson, a global function often used by the EM code was
also reviewed.

3 Testing environment and tools

Performance measurements are essential in evaluating computing performance of appli-
cations, identifying problems and opportunities for code improvement and optimization.
The set of software tools used in the performance evaluation procedure during the review
include FAST [3], IgProf [4], TAU and Gooda [5]. FAST and IgProf are light weighted
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Class name Fractional CPU cost in %
Function name Geant4 version: 9.6.p02 9.6.r07 10.0.p01 10.0.r02

gcc version: 4.4.6 4.4.6 4.4.6 4.8.2

G4PhysicsVector
ComputeValue (in v10 renamed to Value) 4.74 5.04 9.18 9.18
G4PhysicsLogVector
FindBinLocation 0.84 3.48 inlined inlined
G4VProcess
SubtractNumberOfInteractionLengthLeft 0.61 0.73 inlined inlined
G4VEmProcess
PostStepGetPhysicalInteractionLength 1.60 1.51 2.47 2.91
GetCurrentLambda 0.65 inlined 0.50 inlined
PostStepDoIt 0.79 0.62 0.67 0.72
G4VMultipleScattering
AlongStepDoIt 0.69 0.81 0.73 0.73
AlongStepGetPhysicalInteractionLength 0.55 0.55 0.54 0.46
G4VEnergyLossProcess
PostStepGetPhysicalInteractionLength 1.38 1.58 2.60 2.71
AlongStepDoIt 0.61 '.50 0.59 0.65
GetLambdaForScaledEnergy 0.50 inlined inlined inlined
AlongStepGetPhysicalInteractionLength '.35 '.40 0.43 0.47
G4VEmModel, G4VMscModel
G4UrbanMscModel95 (v10 G4UrbanMscModel)
ComputeGeomPathLength 0.80 1.02 0.90 1.17
ComputeTruePathLengthLimit 1.09 0.99 1.17 1.02
SampleCosineTheta 0.70 0.59 1.94 2.47
SampleScattering '.24 '.31 0.58 0.47
Classes and functions added during the review (below)
G4Physics2DVector
Value '.30 '.32 0.38 0.36
FindBinLocation '.20 '.21 0.17 0.18
G4Poisson inlined 0.81 inlined inlined
G4UniversalFluctuation
SampleFluctuations 2.76 1.85 4.01 4.28

Table 1: The list of classes and functions considered in the review, noting which were part
of the initial set (above) and which were added during the review (below). Displayed is the
fractional (exclusive) CPU cost of each function in percent of total, comparing also with
the contemporaneous production releases, Geant4 v9.6.p02 and v10.p01. The data is
based on SimplifiedCalo benchmark, configured with a beam of 50 GeV electrons, the
FTFP BERT physics list and no magnetic field. Values with ' are extrapolations estimated
based on the relative exclusive fractional cost of the associated function and may have a
large systematic uncertainty, while other numbers are usually accurate within 0.1%. The
first three versions of Geant4 were compiled with gcc 4.4.6, the last one with gcc 4.8.2
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Figure 1: The G4VProcess class hierarchy and associated auxiliary classes
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Figure 2: The G4VEMModel class hierarchy
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sampling profilers while TAU is used for source based instrumentation with a relatively
larger time overhead. Preliminary code changes were tested with the aforementioned
Geant4 benchmark application (SimplifiedCalo), tracking 50 GeV electrons without
magnetic field, to perform an initial evaluation. Subsequently, the recommended code was
fully profiled with a set of applications that utilize different input event samples, physics
lists, and detector configurations to collect statistically significant and comprehensive
measurements.

FAST was used primarily for profiling overall CPU performance, while more detailed
performance data with additional hardware counters were collected and analyzed using
TAU. The time measurements are quoted for the case of using SimplifiedCalo with
PYTHIA [6] Higgs events (H → ZZ,Z → all decay channels) unless otherwise noted. The
CPU and memory performance profiling using FAST and IgProf were done on nodes each
equipped with 32-core AMD Opteron(TM) Processors 6128 (CPU: 2000 MHz, Cache: 512
KB). The gcc[7] version used in this review was 4.4.6 initially and 4.8.2 for the later tests.
The most recent development version of TAU (2.23) available was used, incorporating
improvements available until May 2014.

4 General comments

This chapter deals with items common between many different classes. The standout
item in this regard is the use of random number generators. An additional item concerns
the declaration of data members which have a constant value.

4.1 Use of random number generators

In many functions which we have reviewed, we observed that the calls to the pseudo-
random number generators (pRNG) that are often done via macros, predominantly, if not
exclusively, use functions returning single random numbers. In many cases, especially in
loops, using the array interface would minimize the number of calls and would potentially
allow more efficient generation of the random number sequences. For example, the
following macro used in a loop:
#define G4UniformRand() G4MTHepRandom::getTheEngine()->flat()
can be replaced with a call to:
G4MTHepRandom::getTheEngine()->flatArray(const int size, double* vect) 1

followed by a loop iterating over the returned vector of random numbers. This revision
is of most interest when the function is a significant consumer of CPU time, but the
accumulated effect of many such changes in different code locations is also potentially
relevant.

In functions that use the random number generator engine several times we suggest to
cache its pointer value to remove the need to call the singleton pattern “getter” repeatedly.
If this suggestion is followed, a way to propagate a change of pRNG engine to all clients is

1We tried inlining of G4MTHepRandom::getTheEngine() with a neutral effect.
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likely required, to ensure that a change by the user of this engine between runs or in a
start of run or start of event action is not missed.

We also noticed that the inverse of a random number is needed/used several times
and therefore may warrant using/providing this type of interface. Other probability
distribution functions are also used and required beyond the well established Gaussian
and Poisson distribution. An optimized dedicated interface in the pRNG classes could be
developed to take into consideration these additional cases.

Given the importance of random number generation, a review of its use in all Geant4
classes may be beneficial. See Section 5.10 for an example of suggested code transforma-
tions.

4.2 Constants and parameters with a constant value

A number of different classes contain several physical constants defined as member
variables (data members). Other data members are parameters of the method which are
never changed.

When these values are true constants or simply are never changed, it is good practice
to ’promote’ them into constants. In this way any future code maintenance which causes
the value to be changed in the source code will be flagged by the compiler as an error - as
it should be.

We note also that an advanced compiler can include the value of constants directly in
expressions, and potentially do some computations at compile time - avoiding the need to
do them at runtime.

One example of this issue in G4VEnergyLossProcess is data members such as e.g.,
fMigdalConstant, fLPMconstant, klpm, kp) could become either constant data mem-
bers or local constants ( or could declared as static const in the code near their use to
improve clarity (by reducing the number of code locations the maintainer or user has to
read, and the distance between them. )

4.3 Naming conventions for data members and global
variables

The inspection of classes was hampered by the lack of some standard coding conventions.

In particular there is a strong need for a convention in the naming of data members.
The lack of such a convention makes it harder to read (and thus also maintain) any
non-trivial class or code. For example, even a reader who has inspected the code before
and even made modifications, needs to carefully check whether particular variables are
data members or not.
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4.4 Improving constructors to avoid unwanted type
conversions

A number of class constructor have either one argument constructors, or constructors
with more arguments which have default arguments for all but the first argument. Such
constructors could be used for implicit type conversion by a compiler. To protect against
this we suggest to make it common practice that they are always declared explicit.

Example of such constructors are G4VEmModel(const G4String& nam);
and G4VEmProcess(const G4String&, G4ProcessType type = fElectromagnetic)
which can be be made explicit without causing any overhead or issue.

Although in some cases the omission of ’explicit’ is unlikely to dangerous, we suggest
to make its use routine for such constructors. This way it will be present in the cases in
which it is an important safeguard, e.g. in utility classes which are reused within the EM
package.

In addition we suggest to move the “initialization” assignment statements of construc-
tors,

into the initializer list when possible (use parent class constructors and ternary
operator if needed). An example which would benefit from this is the above G4VEmProcess
constructor.

5 Class-specific observations

What follows are some class-specific observations. Is not an exhaustive list of comments
one could make about the code we reviewed. Instead, we concentrated on making remarks
with predominantly performance impact or ones related to the code correctness, with
only occasional comments related to the programming style.

5.1 G4VEnergyLossProcess

The class G4VEnergyLossProcess is derived from G4VContinuousDiscreteProcess
and all energy loss processes inherit from it.

While investigating classes inheriting from G4VEnergyLossProcess, we found that
none of the derived classes except G4eIonization and G4IonIonization invoke
AlongStepGetPhysicalInteractionLength and AlongStepDoIt during simulation.

The way this is done is the following: The isIonisation flag is set to true in the
constructor of G4VEnergyLossProcess, but it is overridden by SetIonisation(false)
in the constructors of the classes (or their parent classes) listed below:

• G4eBremsstrahlung

• G4MuBremsstrahlung
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• G4MuPairProduction

• G4ePolarizedBremsstrahlung

• G4hBremsstrahlung

• G4hPairProduction

The class hierarchy can probably be optimized by reorganizing, and possibly absorbing
the functionality of the following member functions of G4VEnergyLossProcess in the
parent classes:

• PostStepGetPhysicalInteractionLength
This member function overrides the original member function of
G4VContinuousDiscreteProcess since a set of correction factors, including
the scaled energy, are additionally applied in the case of the energy loss process.
Nonetheless, these scale factors can be taken into account in other relevant places
and the additional virtual function may not be necessary. For example, the scaled
energy could be calculated when physics tables are built during the initialization
and then it would not need to be evaluated in every stepping action for the default
process (using the look-up table).

• PostStepDoIt
Because this pure abstract function is implemented in the third layer of the class
hierarchy for the first time, it may be worth to either remove the (intermediate) class,
G4VContinuousDiscreteProcess or implement the common functionality in it.

The commonality of these two items leads us to suggest removing one class layer - we
believe it would be possible to avoid inheriting from G4VContinuousDiscreteProcess,
which anyway leads to confusion (see the next two sections.)

Regarding PostStepGetPhysicalInteractionLength we suggest to move the invo-
cation of the bias manager out of this function to avoid the testing if it needs to be called
in every stepping action for the default process.

There are places where the number of lines of code could be reduced. For a example,
in member functions of the G4VModel classes called from G4VEnergyLossProcess, the
following lines are redundant:

void G4eBremsstrahlungRelModel::SampleSecondaries( ... )
{

...
kinEnergy = kineticEnergy;
totalEnergy = kineticEnergy + particleMass;
densityCorr = densityFactor*totalEnergy*totalEnergy;
...

}

since they are already calculated in G4eBremsstrahlungRelModel::SetupForMaterial.
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It seems that many data members in this class are introduced for the purpose of
caching or sharing states across member functions which may be reduced by passing
them as function arguments or introducing a simple helper class.

There appear to exist a few variables, such as klpm and kp, that are not used anywhere,
but are declared and evaluated (i.e. a value is computed for them.)

It is also recommended that the data members should be reordered in the way that
the most often used ones come first and big objects come later in the class so that the
data is cached more efficiently (cf. ref. [8]).

5.2 G4VContinuousDiscreteProcess vs. G4VDiscreteProcess

Many of the EM classes derive from G4VContinuousDiscreteProcess and
G4VDiscreteProcess (which are derived from G4VProcess).

Most electron processes inherit from G4VContinuousDiscreteProcess and yet be-
have as G4VDiscreteProcess: they override the AlongStepDoIt function, and if a flag
is set they do nothing. In addition, in order to ensure that those “do nothing” func-
tions are not executed, flags are utilized in the registration of these processes in the
G4ProcessManager to ensure that these processes are treated as G4VDiscreteProcess
i.e., that they do not appear in the list of processes which are called during the AlongStep
loops, either for the interaction length polling or the process application (DoIt).

This was handled originally in the process of registering these classes in a physics
list or a physics constructor. Now this task is undertaken by the G4PhysicsListHelper
class which supersedes the process-specific class inheritance.

It appears that this solution has been chosen in order to have all the relevant classes
inherit from one G4VEnergyLossProcess class, in order to share the energy loss and
interaction length computation and associated tables and derived quantities. The current
solution involves a rather obscure procedure of not registering a process for its AlongStep
component. This is quite likely to be forgotten by future maintainers of the code. For this
reason we believe it is important to consider whether an alternative solution (design) can
achieve the same result, while being simpler to maintain.

If an alternative is not found, we strongly suggest that the choice of this solution
is documented, and the requirements to keep it working made explicit. Since failing
to maintain this “non-registration” would result in extra work and likely performance
degradation, the code should either report a fatal exception or write a significant error
which can be found during testing.

As explained earlier and in the section 5.1, most of electron processes inherited from
G4VContinuousDiscreteProcess should probably be G4VDiscreteProcess.

It is also not clear whether G4VDiscreteProcess is an essential layer of the class
inheritance hierarchy for photon processes and all of its member functions could probably
be moved to G4VEmProcess. Reviewing what needs to be reimplemented, restructuring or
possibly removing G4VContinuousDiscreteProcess and G4VDiscreteProcess may be
explored in the future design.
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5.3 G4VEmProcess vs. G4VEnergyLossProcess

We noted some code similarities between G4VEnergyLossProcess and G4VEmProcess
e.g., in AlongStepDoIt or PostStepDoIt.

It looks like the SelectModel used in PostStepDoIt in both of the classes have the
same functionality implemented in two different ways. It is not the only example of very
similar functions. SelectModelForMaterial is another one. DefineMaterial are very
similar.

It may seem that G4VEmProcess and G4VEnergyLossProcess were “derived” from a
common code source and evolved together in a similar but not exactly the same way in
many cases having the same functionality which could be factored out into another class
or global functions. This observation serves as another argument that it may be possible
to optimize the class structure/hierarchy.

5.4 G4VEmProcess

PostStepGetPhysicalInteractionLength is a virtual function, declared pure vir-
tual at G4VProcess level, defined at the G4VDiscreteProcess level and rede-
fined in G4VEmProcess. It does not perform many calculations, but is called
many times what may be the reason why it takes a lot of CPU cycles. Based
on the TAU analysis the derived class responsible for most invocations of the
PostStepGetPhysicalInteractionLength is G4CoulombScattering (29.1%), followed
closely by G4GammaConversion, G4PhotoElectricEffect, and G4ComptonScattering
with 22.44% each (complete details are in Section 6.1).

We observed that GetCurrentLambda is a very short function which is declared inline;
gcc 4.4.6 does not inline it, whereas 4.8.2 does.

We note relatively large Level2 data cache/instruction misses attributed to
PostStepGetPhysicalInteractionLength and PostStepDoIt which may be another
reason why the functions takes a lot of CPU time.

5.5 G4VMultipleScattering

In the current design in the G4VProcess hierarchy there is a class
G4VMultipleScattering from which three concrete classes derive:
G4eMultipleScattering, G4hMultipleScattering and G4MuMultipleScattering.
The difference between the first and two later concrete classes (electron vs.
hadron and muon) is very small, consisting of the choice of one parameter (
SetStepLimitType(fMinimal) in G4(h/Mu)MultipleScattering functions, (plus a
minimal printout difference). Whether this warrants a separate class is debatable,
therefore we suggest merging the code if feasible.
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5.6 G4PhysicsVector class hierarchy

We noted that the three main data members of this class: dataVector, binVector and
secDerivative of std::vector<G4double> type, are usually used in “lockstep” in a
loop. We then investigated if collocating the data which is used together would lead to a
CPU time gain.

We replaced the above three data members with one, of std::vector<G4xyd> type,
where G4xyd is a helper class with three G4double data members, operator<, and default
(G4xyd()) and three argument G4xyd(G4double, G4double, G4double) constructors,
i.e., we replaced three vectors of G4doubles with one vector of structs to localize access.
We also initialized all data members in the constructors, using initializer list when
possible, removed copy constructor and (assignment) operator= as the default ones
supplied by the compiler should be correct eliminating the need to maintain the hand
written code. We then modified derived classes accordingly. We also replaced some if
statements with the ?: (ternary) operator and replaced hand-coded binary search in
G4LPhysicsFreeVector::FindBinLocation with std::lower_bound

The overall effect of transforming G4PhysicsVector in Geant4 v9.6.r07 was
about 1.5% performance improvement. For a comparison we note that the
G4PhysicsVector::Value function itself used to take about 3% of the total execu-
tion time. We observed that the timing improvement was not attributed to this function
itself. It occurred in other areas, mainly in CLHEP::MTwistEngine::flat, likely due to
caching effects.

No measurable CPU effect was observed in Geant4 v10 for the equivalent transfor-
mation of the three main data members. Probably other code transformations which
occurred between the versions impacted the above result. The code analysis using TAU
revealed that G4PhysicsVector::Value() did become faster and had less Level2 cache
misses, but other functions became slower.

We recommend to make the data members (containers) of G4PhysicsVector “read
only” (and initialize them in the constructors), in order to conform with the best-practice
’rule’ that shared objects in multi-threading must be constant. A design change may
be required to cope with the potential lifecycles of the vector, e.g. whether its values
are calculated by a particular class, or are retrieved from a file. This would also re-
quire a rewrite of the class G4PhysicsOrderedFreeVector which currently derives from
G4PhysicsVector. Potentially this could become an independent class as it modifies its
data members after the instantiation.

FindBinLocation member function

We noted that in Geant4 v10, FindBinLocation was moved to the base class,
made non-virtual and inlined. An if was used to detect the type (using an enum
G4PhysicsVectorType) of the underlying classes). After inlining FindBinLocation
the G4PhysicsVector::Value function by itself took about 6% of the total execution
time. In order to asses the effect of the inlining of FindBinLocation we profiled Geant4
v10 and found that the inlining causes about 1% performance degradation although there
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are event samples where it does help. Therefore the conclusion regarding the impact of
the change is not as strong as in other cases.

Given that inlining of FindBinLocation may not be as beneficial as intended, we
recommend abandoning the use of G4PhysicsVectorType and going back to using the
virtual functions mechanism, delegating the type detection back to the compiler.

We also noted a potential typo in one of the type enums in G4PhysicsLnVector where
T_G4PhysicsLogVector is mixed with T_G4PhysicsLnVector. Using virtual functions
avoids this type of problems.

5.7 G4Physics2DVector

G4Physics2DVector is another frequently used container class. We investigated chang-
ing the type of its underlying container to float. In unit tests, it resulted in about 13%
degradation (probably due to the type conversion). 2

We also investigated removing a level of indirection and attempted to provide for a
decrease of the code maintenance by changing the underlying container type from
std::vector<std::vector<G4double>*> to
std::vector<std::vector<G4double> >
which allowed to remove the copy constructor, the assignment operator and the de-
structor. We also used std::lower_bound in FindBinLocation and inlined the func-
tion. Based on about 13% improvement in a unit test, we expected a minimal over-
all performance improvement, but the result was more than 5% degradation despite
G4Physics2DVector::Value function taking only about 0.3% of the execution time,
likely due to cache effects. In order to explain the slowdown effect we inspected the gcc
Standard Template Library vector implementation and did not find any partial specializa-
tion for pointers to objects.

The above result suggests that this is one of those cases in which the data layout is
more important than the algorithms. It underscores the importance of profiling/bench-
marking after each code change as some of the profiling results may seem counter
intuitive.

5.8 G4Poisson

G4Poisson is a frequently used global function. We noted that its code could be improved
slightly, e.g., one should use correct types of the numeric literals, use preincrement
instead of the postincrement operator, use the ternary operator instead of the last two
lines, possibly cache the pointer to the random number engine, but more importantly, by
just making the function inline one gains more than 30% CPU time in a unit test and
about 2% overall.

2It resulted in about 12% improvement on an NVIDIA(TM) GPU though.
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After inlining of G4Poisson, the functions where the code was inlined became slightly
more compute intensive, as it was expected, but it was more than offset by the gains in
other functions, e.g., steppers.

5.9 G4UrbanMscModel

The inspection of the ComputeTruePathLengthLimit member function was made harder
by its length and the three modes which it handles. We suggest separating some of the
per-mode code into separate functions, and inline if possible. There was one passage
of code that appeared to be completely common between the three different modes,
apparently handling the cases of the first step in a volume or a boundary:

if(firstStep || stepStatus == fGeomBoundary) {
G4double temptlimit = tlimit;
if(temptlimit > tlimitmin)
{

do {
temptlimit = G4RandGauss::shoot(tlimit,0.3*tlimit);

} while ((temptlimit < tlimitmin) ||
(temptlimit > 2.*tlimit-tlimitmin));

}
else { temptlimit = tlimitmin; }
tPathLength = min(tPathLength, temptlimit);

We suggest to move this common code out of the if/else if/else in order to reduce
the length of the code and the size of the resulting instructions.

In the member function SampleScattering several random numbers are used. In
a manner similar to G4UniversalFluctuation::SampleFluctuations (see Sec. 5.10)
a benefit can be obtained by caching the pointer to the pRNG and requesting a certain
number of values needed in this function in one call using the pRNG array interface.

Also, in one of two cases a set of expensive trigonometric functions are used in order
to calculate the sine and cosine of a compound angle:

if(std::abs(r*sth) < latcorr)
Phi = twopi*G4UniformRand();

else
{

G4double psi = std::acos(latcorr/(r*sth));
if(G4UniformRand() < 0.5)

Phi = phi+psi;
else
Phi = phi-psi;

}

dirx = std::cos(Phi);
diry = std::sin(Phi);
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In case this else branch is frequently used, this code can be revised to use only
one expensive operation (square root) in place of the inverse-cosine, the sine and the
cosine, by using the standard trigonometric equalities for the sine and cosine of the sum
of two angles. In particular this can be done by computing the sine of psi from the
cosine (including a sign in a similar way using a uniform random number), and then
calculating the sine and cosine of Phi using the known relations for the sine and cosine
of the addition of Phi and psi.

If the values of the sine and cosine of Phi (already calculated above) are stored in
variables sinPhi and cosPhi, the resulting code would look something like the following:

if(std::abs(r*sth) < latcorr)
{

G4double newPhi = twopi*G4UniformRand();
dirx = std::cos(newPhi);
diry = std::sin(newPhi);

}
else
{

G4double cosPsi= latcorr/(r*sth);
G4double sinPsi= std::sqrt( 1.0 - cosPsi * cosPsi );
if(G4UniformRand() < 0.5)

sinPsi = - sinPsi;

dirx= cosPhi * cosPsi - sinPhi * sinPsi;
diry= sinPhi * cosPsi + cosPhi * sinPsi;

}

In addition to the above, we investigated inlining several of the shorter functions of this
class, four of which were inlined by gcc v4.4.6 in Geant4 v10:

• SampleDisplacement(),

• ComputeTheta0(G4double, G4double),

• SimpleScattering(G4double, G4double),

• LatCorrelation()

leading to about 1.5% CPU improvement (comparable to the original fractional time spent
in those functions). However, when the same code was inspected in Geant4 v10.ref01,
only the first three functions were inlined by the compiler and there was no noticeable
CPU time difference between the inlined and the non-inlined code.

5.10 G4UniversalFluctuation::SampleFluctuations

This function is one of the most CPU consuming. It does not call other functions except
the random number generator functions. This makes it a strong target for improvement.
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Profiling using Gooda [5] showed that a significant fraction of the execution time
is spent in division of doubles. An inspection of the code revealed that a number of
divisions could be avoided, either by preparing the reciprocal or by doing a comparison in
a different way. Proposed changes which took out three divisions were fed back to the
code developers and adopted by them.

Another opportunity for optimization is the use of random numbers. The following
line is responsible of a significant fraction of the relative CPU time:
for (G4int k=0; k<nb; ++k) { lossc += w2/(1.-w*G4UniformRand()); }
The loop has an upper limit nb, a random number itself, distributed according to the
Poisson distribution. The calls to the random number generation inside the loop, create
an unnecessary overhead; it also prevents the possible use of the array interface available
for random number generators. Moreover, the call to retrieve the pointer to the random
number generator in a multi-threaded build of Geant4 is even more expensive because it
requires dealing with a Thread Local Storage pointer (also see comments in Sec. 4.1.)

We suggest to write the code as follows (see the code listing on page 19): First, retrieve
the pointer to the (thread–local) instance of the random number engine only once and
cache it to generate random numbers. Use the array interface. For the loop under
discussion, use a static instance of the array to avoid re-creating the buffer to store the
array of random numbers. Grow the array if needed.

With these modifications we have measured a 10% relative improvement of the
SampleFluctuations function in a unit test. To make the code more readable we
have tried to replace the code dealing with rns with the creation of a local variable in the
function. Such a simplification, however, reduces the CPU gain (we have also tried to
use of std::vector instead of a c-array, but in such a case the code was found to have
slowed down).

Finally we have noticed that the algorithm of sampling fluctuations is contained in the
following for loop: for (G4int istep=0; istep < nstep; ++istep) {...}
where the nstep upper limit can take the values of 1 or 2. To take advantage of such
property we have tried to remove the loop and apply several code transformations.
Unfortunately, these have not introduced any further CPU benefit and instead have made
the code less readable. We do not thus suggest further transformations.

6 Observations based on TAU measurements and analysis

The measurement and associated analyzes were conducted throughout the review and
the results were used to understand the effects of attempted code transformations (e.g.,
the data structure modification in Sec. 5.6). In addition, the measurement infrastructure
developed during the review included a number of performance tool extensions and initial
automation that will make detailed performance analysis in the future less effort-intensive
and more efficient.

We performed detailed measurements with the TAU Performance System R© [1], creating
a database of results by using the performance data management system, TAUdb [16, 15].
TAUdb stores profiles from performance experiments along with metadata describing
the execution environment and application-specific metadata. Data stored in TAUdb is
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//Create thread-local cache object to store pRNG numbers.
//Use a reasonable size for the array to keep pRNG.
namespace {

G4ThreadLocal int siz = 30;
G4ThreadLocal double* rns = 0;
G4ThreadLocal CLHEP::HepRandomEngine* rngEngine = 0;

}

G4double G4UniversalFluctuation::SampleFluctuations(...) {
...
// First time that the pRNG is accessed
if ( !rngEngine ) rngEngine = G4MTHepRandom::getTheEngine();

// Note that in the following we use always rngEngine. For
// example we use G4RandGauss::shoot( rngEngine, mean, sigma)
// instead of G4RandGaus::shoot(mean,sigma)
...
const G4int nb = G4Poisson(p3);
if ( nb > siz || !rns )
{

delete[] rns;
siz=nb;
rns = new double[nb]; // use unique_ptr in future

}
if(nb > 0) {

rngEngine->flatArray(nb,rns);
for (G4int k=0; k<nb; ++k) { lossc += w2/(1.-w*rns[k]);}

}
...

}

accessible from the ParaProf [11] parallel profile analyzer and the PerfExplorer [13, 14]
performance data mining framework. PerfExplorer provides a library of internal analysis
routines and an interface to statistics and data mining packages, such as R and Weka [17].
An API to the analysis library and a Python scripting engine are available so that analysis
pipelines can be specified programatically.

We instrumented Geant4 with the TAU suite of tools using two different strategies.
First, we performed a full instrumentation at the function level, which enabled us to
collect accurate measurements of a variety of low-level hardware counters. Because the
runtime overhead of this type of profiling is significant, we also implemented an alternate
instrumentation approach that only added performance data collection to selected classes
and functions listed in Table 1. The instrumented source code of Geant4 was then built
by using the same build configuration as normal production runs. The instrumentation
does not significantly perturb metrics such as cache misses, which is verified through
comparison of instrumentation-based measurements with non-intrusive sampling-based
results. We also verified through inspection of the object code that the instrumentation
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does not interfere with inlining, i.e., that functions specified as inlined are still being
inlined after instrumentation.

The instrumentation and analysis of a large, complex C++ application such as Geant4
required a number of extensions in the TAU performance tools and resulted in the
creation of new analysis capabilities, which will be usable in other application contexts.
Examples of new capabilities include the following:

• Profiling of inlined functions;

• Identification of ”lightweight” classes, i.e., intermediate layer (semi-abstract) classes
in the hierarchy that consume a significant percentage of resources while doing little
useful work;

• Accumulation of different metrics (time, any performance hardware counter, or
derived metrics) by class, sorting by the fraction of total.

To our knowledge, no other performance tool provides class-based statistics, which
are important when one wishes to consider the performance impact of different object
oriented design decisions.

6.1 SimplifiedCalo Results

We performed a number of experiments with the SimplifiedCalo benchmark code and
Geant4 v. 10 to collect the hardware statistics described in Table 2. The tests were
performed on the Aciss cluster at University of Oregon, specifically on Intel Xeon X5650
2.67GHz 12-core dual processor nodes with 70GB of DRAM (per node). Geant4 was
compiled with gcc 4.8.2 using the RelWithDebInfo (with the default optimization level
-O2) cmake build type.

To collect the performance counter data we used automated instrumentation of the
source code through TAU compiler wrappers by configuring Geant4 with -DCMAKE_CXX_-
COMPILER=tau_cxx.sh -DCMAKE_C_COMPILER=tau_cc.sh.

All of the data can be accessed by connecting to the TauDB database hosted at the
University of Oregon (contact Boyana Norris for configuration details). We implemented
several PerfExplorer analysis scripts to produce statistics grouped by classes of interest,
sorting classes and their functions by the fraction of the total amount for each metric.
The scripts are written in Jython and will be documented and made available online.

All runs were done with Geant4 v10 and used the standard electromagnetic physics
list. The SimplifiedCalo settings used for the experiments are listed in Appendix A
unless otherwise noted.

Measurements Summary

The following experimental data shows several performance counters (collected through
instrumentation, unless indicated otherwise) for the classes in Table 1. We focus on
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Category Metric Description
Time P WALL CLOCK TIME Wall-clock time
Memory L1 DCM Level1 data cache misses
Memory L2 DCM Level2 data cache misses
Memory L2 DCA Level2 total number of Level2 data accesses
Memory L1 ICM Level1 instruction cache misses
Memory L2 ICM Level2 instruction cache misses
Memory L2 TCM Total Level2 cache misses (data and instructions)
Memory L3 TCA Total Level3 cache accesses
Memory LD INS Load instructions
Memory TLB DM Data translation lookaside buffer misses
Memory TLB IM Instruction translation lookaside buffer misses
Memory TLB TL Total translation lookaside buffer misses
Jumps BR MSP Number of mispredicted branches
Jumps BR INS Total number of branch instructions
Compute DP OPS Number of double precision floating-point operations
Compute FP OPS Number of single precision floating-point operations
General VEC DP Vector/SIMD instructions executed (double precision)
General VEC SP Vector/SIMD instructions executed (single precision)
General TOT CYC Total cycles
General TOT IIS Total instructions issued
General TOT INS Total instructions executed
General RES STL Total resource stalls (any reason)

Table 2: Hardware metrics collected for SimplifiedCalo.

metrics that are typically the main contributor to performance degradation. Data for
functions marked with * was obtained with sampling and includes initialization. All other
data was obtained with instrumentation and does not include initialization. At this time,
headers could not be instrumented automatically and hence we relied on sampling for
data for functions defined in headers. For instrumentation-based measurements, we
show the inclusive measurement percent of total, followed in parentheses by the exclusive
measurement as percent of total. An inclusive measurement includes the value of the
counter (or time) for that function and all the functions called within it, while an exclusive
measurement includes only the value of the counter (or time) for the function, excluding
measurements for functions called within in.

The G4PhysicsVector::Value function was responsible for 8.5% of CPU stall cy-
cles but only 3% of the instructions executed for the application (excluding initializa-
tion). Looking into it in more detail, we observed that it is responsible for over 4%
of TLB 3 data misses and 2% of all Level2 cache misses (including 3% Level2 data
and 0.9% Level2 instruction cache misses), which are likely the main causes of the
stalls. To a lesser extent, the same relatively high stall rates caused mainly by TLB in-
struction misses can be seen in G4UrbanMscModel’s ComputeTruePathLengthLimit
(this can be caused by aggressive inlining or loop unrolling). For G4VEmProcess’s
PostStepGetPhysicalInteractionLength and PostStepDoIt functions, the stalls are
caused by a combination of Level2 and TLB data and instruction misses. On the other
hand, while G4UniversalFluctuation’s SampleFluctuations function incurs a large

3Translation Lookaside Buffer - a cache used to improve virtual address translation speed.
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Class name Performance hardware counter measurements (%Tot)
Function name Stalls L2 TCM TLB DM TLB IM Time

Inc. (Excl.) Inc. (Excl.) Inc. (Excl.) Inc. (Excl.) Inc. (Excl.)

G4PhysicsVector
Value 8.46 (8.46) 1.67 (1.67) 4.13 (4.13) 1.46 (1.46) 2.68 (2.68)
G4PhysicsLogVector
FindBinLocation – – – – –
G4VProcess
SubtractNumberOfInteractionLengthLeft – – – – –
G4VEmProcess
PostStepGetPhysicalInteractionLength 4.07 (1.49) 2.20 (1.62) 3.09 (1.95) 1.93 (1.45) 2.51 (1.82)
GetCurrentLambda* <0.01 <0.01 <0.01 <0.01 <0.01
PostStepDoIt 4.56 (0.68) 2.93 (1.31) 1.83 (0.64) 2.57 (1.16) 1.68 (0.72)
G4VMultipleScattering
AlongStepDoIt* 2.1 (0.2) 1.9 (0.4) – 1.7 (0.3) 1.8 (0.2)
AlongStepGetPhysicalInteractionLength* 4.8 (0.2) 4.2 (0.4) – 2.6 (0.2) 2.3 (0.3)
G4VEnergyLossProcess
PostStepGetPhysicalInteractionLength* 1.8 (0.4) 1.9 (1.0) – 0.6 (0.5) 1.2 (0.7)
AlongStepDoIt* 2.8 (0.3) 1.0 (0.4) – 0.8 (0.3) 4.2 (0.3)
GetLambdaForScaledEnergy – – – – –
AlongStepGetPhysicalInteractionLength* 0.5 (0.2) 0.5 (0.2) – <0.1 0.4 (0.3)
G4UrbanMscModel
ComputeGeomPathLength 1.04 (0.61) 0.56 (0.48) 0.78 (0.55) 1.93 (1.79) 0.62 (0.47)
ComputeTruePathLengthLimit 3.67 (0.99) 2.90 (1.99) 2.52 (0.91) 6.02 (3.78) 2.37 (1.19)
SampleCosineTheta 1.84 (1.78) 0.61 ( 0.58) 0.36 (0.21) 0.49 (0.48) 0.31 (0.21)
SampleScattering 3.20 (1.22) 1.32 (0.67) 0.77 (0.25) 1.18 (0.65) 0.73 (0.31)
Classes and functions added during the review
G4Physics2DVector
Value 0.40 (0.39) 0.36 (0.32) 0.40 (0.26) 0.03 (0.03) 0.34 (0.24)
FindBinLocation <0.01 0.05 (0.05) 0.13 (0.13) <0.01 0.01 (0.01)
G4Poisson* <0.01 0.22 – <0.01 0.33
G4UniversalFluctuation
SampleFluctuations 8.10 (8.10) 0.53 (0.53) 0.18 (0.18) 1.10 (1.10) 0.13 (0.13)

Table 3: Hardware counter-based measurements shown as percent of total (for Geant4
v10). The functions for which no data is shown were not called in the experiments we
performed while collecting these data. Data for functions marked with * was obtained with
sampling and includes initialization. All other data was obtained with instrumentation
and does not include initialization.

number of stalls over a short time, making it one of the most FLOP-inefficient functions
as defined in the next section, it is not immediately evident why the stall rate is so high.
More detailed analysis is needed to establish with certainty the dominant cause for the
high stall cycle counts in this and some of the other functions.

We also computed a floating-point inefficiency metric which identifies functions that
have high proportion stalled cycles (for any reason) and also perform a significant number
of floating-point computation (as a fraction of all instructions). We computed this as the
weighted rate

FPineff = w
Insfp

Instotal

Cyclesstall
Cyclestotal

where w is the function cycles (exclusive) fraction of total application cycles and Insfp is
the number of floating-point instructions, and Instotal is the total number of instructions.

Table 4 shows the most FLOP-inefficient functions among the ones we considered
during the review (those, for which the metric represents more than 1% of the application
total).
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Class name FPineff Number % of
Function name Value (Excl.) of Calls Total
G4UniversalFluctuation 60
SampleFluctuations 1.25e+00 1.56e+07 60

G4UrbanMscModel 16
SampleCosineTheta 1.98e-01 1.44e+07 9.5
SampleScattering 9.31e-02 1.44e+07 4.5
ComputeTruePathLengthLimit 2.68e-02 4.57e+07 1.3

G4PhysicsVector 11.3
Value 2.35e-01 3.71e+08 11.3
G4VEmProcess 2.2
PostStepGetPhysicalInteractionLength 2.99e-02 1.61e+08 1.4

G4VEnergyLossProcess 1.8
PostStepGetPhysicalInteractionLength 3.35e-02 9.38e+07 1.6

Table 4: FLOP-inefficient functions that have high proportion stalled cycles (for any
reason) and also perform a significant number of floating-point computation (as a fraction
of all instructions) and are thus candidates for optimization.

Lightweight Functions

We identified “lightweight” functions, i.e., those functions that have relatively few
floating-point instructions per call but take a significant fraction (> 0.5%) of the overall
execution time. These are grouped by class and summarized in Table 5. These results
are based on data obtained through instrumentation (which has accurate function call
counts). The FLOP-inefficient
G4VEmProcess::PostStepGetPhysicalInteractionLength is also among the
lightweight functions because each call does relatively few operations (but there
are many calls).

Class Total Number FP Instr. % of Total
Function Instr. of Calls per Call Time
G4VEmProcess 1.56e+10 2.97
PostStepGetPhysicalInteractionLength

1.14e+10 1.61e+08 70.64 1.82
PostStepDoIt 3.89e+09 3.05e+07 127.44 0.72

Table 5: Lightweight functions that have relatively few floating-point instructions per call
but take a significant fraction (> 0.5%) of the overall execution time.

PostStepDoIt and PostStepGetPhysicalInteractionLength

To understand better the use of these two significant functions implemented in
G4VEmProcess (discussed in Section 5.4), we instrumented the implementation to
record the specific types of the process objects for which these virtual functions are
invoked among the subclasses of G4VEmProcess and count the number of calls made
for each type. The separate instrumentation was necessary because these virtual func-
tions are dynamically dispatched to the G4VEmProcess implementation of each func-
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tion, and thus regular performance measurements show calls to PostStepDoIt and
PostStepGetPhysicalInteractionLength as calls on G4VEmProcess instances.

The PostStepDoIt virtual function is called in the
void G4SteppingManager::InvokePSDIP(size_t np) function and in most instances
this results in a call to the implementation provided in the base class G4VEmProcess.
Tables 6 and 7 show a breakdown of the number of calls made through objects of each
concrete type (These counts are for 500 events, the total number of calls was 1.386e+08).

Class name Count % of total

G4ComptonScattering 20668199 14.91%
G4PhotoElectricEffect 8916255 6.43%
G4GammaConversion 852255 0.62%
G4eplusAnnihilation 79927 0.06%
G4CoulombScattering 999 0.0007%

Table 6: Types of objects for which PostStepDoIt was invoked (in the G4VEmProcess
hierarchy).

Class name Count % of total

G4Transportation 83117473 59.97%
G4eMultipleScattering 16078703 11.60%
G4eBremsstrahlung 8476856 6.12%
G4eIonisation 450700 0.32%

Table 7: Types of objects for which PostStepDoIt was invoked (not in the G4VEmProcess
hierarchy).

The PostStepGetPhysicalInteractionLength virtual function is called in the
G4VProcess::PostStepGPIL function and in most instances this results in a call to
the implementation provided in the base class G4VEmProcess. Table 8 shows a break-
down of the number of calls made through objects of each concrete type (These counts
are for 500 events, the total number of calls was 1.612476e+08).

Class name Count % of total

G4CoulombScattering 4.692927e+07 29.10%
G4GammaConversion 3.618821e+07 22.44%
G4PhotoElectricEffect 3.618821e+07 22.44%
G4ComptonScattering 3.618821e+07 22.44%
G4eplusAnnihilation 5.753727e+06 3.57%

Table 8: Types of objects for which PostStepGetPhysicalInteractionLength was
invoked (in the G4VEmProcess hierarchy).
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6.2 Results of G4PhysicsVector modifications using G4xyd
helper class

Table 9 shows a comparison of the top functions (in version 10.0) sorted by exclusive
execution times, with the timings and Level2 total cache misses for a version where
G4PhysicsVector data members were replaced with the std::vector<G4xyd> as de-
scribed in section 5.6 (denoted 10xyd in the table). The improvement percentage is
computed as (Tv10−Txyd)/Tv10 and positive numbers indicate improvement, while negative
values indicate degradation. Total Level2 misses (labeled with L2 TCM) were computed
similarly and a positive value in the improvement column indicates improvement, while a
negative value indicates degradation. This data was collected for the same experiment
configuration as in the rest of this section. The measurements represent exclusive values
(only for the function indicated) and were obtained with low-overhead sampling using a
sampling period of 1,000 microseconds.

The replacement of the separate dataVector, binVector, and secDerivative
vectors with a single vector of the new (combined) type G4xyd did not result
in significant improvements of the G4PhysicsVector::Value computation (in-
cluding the two functions it calls, G4PhysicsVector::SplineInterpolation()
and G4PhysicsVector::FindBinLocation()). Note that
G4PhysicsVector::Value calls G4PhysicsVector::SplineInterpolation() and
G4PhysicsVector::FindBinLocation() – the combined exclusive times of these three
functions represent the inclusive Value function time which is 7.1% and 7.3% of the
total time for versions 10 and 10xyd, respectively. The overall effects were mixed, with
degradation observed in some seemingly unrelated functions and an overall slowdown of
2.45%. The changes in the xyd version did improve the L2 cache misses by 5.3% overall,
but that does not compensate for the performance degradation. Additional analysis is
needed to determine the specific causes.

7 Impact of changes

7.1 Impact of inlining and using compiler optimization

We looked at the impact of inlining and optimization (when using gcc).

We observed that the optimized and inlined code is much faster (even by a factor of
four for the full SimplifiedCalo at optimization levels of 2 and 3) compared to the non-
optimized/non-inlined one. Due to the optimizations, even seemingly local code changes
can modify the resulting final executable quite significantly (based on an inspection using
GNU objdump).

The inlining should be considered with caution though, as at times it failed even for
apparently suitable cases (short functions), and we have clearly demonstrated that it
does not always improve the performance (cf. subsection 5.6). Inlining short functions
and computationally critical code is usually a good approach, however one should always
double check if the final result is beneficial from the performance point of view by profiling
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Time (milliseconds); exclusive; sampling; includes initialization Total L2 misses; Exclusive
%total %total Time (µs) Time (µs) % Improv. L2 TCM L2 TCM % Improv.

v10 xyd v10 xyd v10 xyd

Total 226666 232211 -2.45% 2.38E+09 2.25E+09 5.37%
UNRESOLVED /lib64/libm-2.12.so

6.2% 5.4% 13940 12456 10.65% 1.47E+08 1.22E+08 16.83%
4Log.hhG4Log [G]

4.4% 4.3% 10052 9886 1.65% 1.06E+08 9.71E+07 8.67%
G4PhysicsVector::SplineInterpolation()

4.4% 4.3% 9967 9963 0.00% 1.05E+08 9.77E+07 7.09%
G4SteppingManager::DefinePhysicalStepLength()

2.4% 2.3% 5422 5339 1.53% 5.70E+07 5.22E+07 8.46%
CLHEP::Hep3Vector::operator=()

2.1% 2.2% 4755 4993 -0.50% 4.98E+07 4.86E+07 2.39%
4Exp.hhG4Exp [G]

2.0% 2.0% 4597 4560 0.80% 4.89E+07 4.52E+07 7.55%
G4UniversalFluctuation::SampleFluctuations()

1.9% 1.9% 4417 4395 0.49% 4.70E+07 4.37E+07 6.98%
CLHEP::MTwistEngine::flat()

1.7% 2.0% 3876 4575 -18.03% 4.10E+07 4.50E+07 -9.91%
G4PhysicsVector::FindBinLocation()

1.7% 1.8% 3766 4240 -12.59% 3.97E+07 4.15E+07 -4.56%
G4Transportation::AlongStepGetPhysicalInteractionLength()

1.4% 0.9% 3255 2191 32.69% 3.42E+07 2.13E+07 37.65%
G4Navigator::ComputeStep()

1.4% 1.2% 3230 2870 11.15% 3.38E+07 2.80E+07 17.17%
G4ParticleChange::CheckIt()

1.3% 1.3% 2992 3072 -2.67% 3.14E+07 2.99E+07 4.63%
CLHEP::Hep3Vector::rotateUz()

1.3% 1.3% 2945 2916 0.98% 3.11E+07 2.87E+07 7.94%
G4NormalNavigation::ComputeStep()

1.2% 1.1% 2719 2576 5.26% 2.87E+07 2.52E+07 12.23%
4Log.hhget_log_px [G]

1.2% 1.2% 2617 2693 -2.90% 2.77E+07 2.65E+07 4.30%
G4VEmProcess::PostStepGetPhysicalInteractionLength()

1.1% 1.4% 2515 3225 -28.23% 2.64E+07 3.15E+07 -19.26%
G4PhysicsVector::Value()

1.0% 1.2% 2353 2747 -16.74% 2.48E+07 2.67E+07 -7.78%
G4SteppingManager::InvokeAlongStepDoItProcs()

1.0% 1.2% 2309 2672 -15.72% 2.42E+07 2.59E+07 -7.19%
G4SteppingManager::Stepping()

1.0% 1.1% 2288 2495 -9.05% 2.40E+07 2.44E+07 -1.50%
G4UrbanMscModel::ComputeGeomPathLength()

1.0% 0.8% 2287 1887 17.49% 2.40E+07 1.84E+07 23.16%
G4VEnergyLossProcess::PostStepGetPhysicalInteractionLength()

1.0% 1.0% 2251 2228 1.02% 2.37E+07 2.17E+07 8.32%
G4AffineTransform::TransformPoint()

1.0% 0.9 % 2238 2154 3.75% 2.36E+07 2.09E+07 11.33%

Table 9: Sampling measurement comparison between versions 10.0 and 10xyd. See
section 6.2 for related discussion.

and benchmarking the resulting executable. Using gcc -Winline option enables warnings
when inlining fails (outside sysem headers).

7.2 Impact of code modifications

We point out that the increase of the fractional cost of most of the functions listed in
Table 1 was due to inlining of other functions invoked by them.



8. GENERAL RECOMMENDATIONS 27

We also note that the CPU impact of code changes may be bigger than the initial CPU
cost of the code in question, likely due to caching effects (e.g., see section 5.7).

8 General recommendations

The following are recommendations of a more general nature pertaining to more than one
area of the code.

To eliminate unnecessary code maintenance and to (likely) improve performance we
suggest to eliminate custom written copy constructors, assignment operators and de-
structors when the compiler supplied ones are correct; use the ?: (ternary) operator when
possible (beware of implicit conversion though); use Standard Library algorithms; e.g.,
std::lower_bound instead of hand written binary search.

Make all single argument constructors (and those which default to such) explicit, to avoid
unintentional type conversions.

Adopt some consistent naming conventions e.g., for data members and member functions,
to ease reading of the code.

Document and explain the motivation behind the non standard definition of the
operator== and operator!= as they test for identity not equality (same address in
memory vs. equal values), quite common pattern not only in the EM code, as the code
may confuse future code maintainers.

Avoid, and if not possible, document well non obvious side effects and cross dependencies.

Based on the code we saw, we suggest that each code change should be ”approved” by
another person (e.g., to be chosen by the author of the code change) to minimize chances
to make mistakes and to increase the code quality. This should be in addition to the
current proposed tag approval after the code compiles and passes the standard “code
does not crash” test.

We do note that the above recommendations (and findings that lead to them) are not
unique to the EM code only as e.g., indicated in the previous code reviews[10] and cursory
inspection of other areas of the Geant4 code.

9 Summary

A review of compute intensive functions of the electromagnetic processes package (and
some functions frequently used in there) of Geant4 was conducted. The code was
inspected both visually and using TAU Performance System. It was also profiled with
FAST and IgProf tools.

The review was performed in close collaboration with the code authors or maintainers who
were being informed of the important findings with a significant computational impact as
soon as they were discovered.
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The review resulted in several recommendations with a computational impact and pro-
vided additional insight regarding cache misses and other hardware metrics. It also
suggested a need for further code reviews in the areas indicated below.

The review process itself stimulated the development of the TAU package and shall have
a positive impact on future reviews using TAU.

Most of the gains were obtained by code inlining. We note however that it needs to be
done very judiciously as some of our inlining attempts did not result in a performance
gain and had to be retracted.

This underscored the need to verify each code change by performing statistically signifi-
cant profiling and benchmarking as some of the results may seem counter intuitive, likely
due to the complicated interplay between the data structures/layout and the algorithms
operating on them. Also, it is difficult to create a reliable prediction or model the factors
which affect the performance of current hardware, due to its complex nature and the way
in which the compiler harnesses the hardware.

Another review finding was the realization that some of the functions in the
G4VContinuousDiscreteProcess and G4VDiscreteProcess class hierarchies are quite
similar and some of the sub-classes behave in a not very intuitive way as a quite compli-
cated procedure is used to activate certain functions, also suggesting that some of the
sub-classes should probably be moved from one hierarchy to the other and/or the class
structure could be optimized.

The total performance gain based on the review recommendations was about 3% although
the exact number is difficult to obtain as it fluctuated depending on the Geant4 release
and changes in other areas of the toolkit.

10 Suggestions for further review

During the work of this review we have identified other possible areas of the code that
could benefit from a similar review procedure, therefore we suggest to review:

• Both random number generators and their use.

• The entire G4VProcess class hierarchy to see if it could be simplified.

• Adherance to coding conventions and good practices.

Regarding the last item, we recognize that automatic tools can largely simplify the
task of reviewing large code bases in an efficient manner. Some of these tools are
specifically designed to improve code quality: for example Coverity is already used
by Geant4 collaboration to identify code defects. Coverity focus is to identify code
lines that can be bugs or inefficiencies. We suggest the evaluation of another tool
(ACRE) (https://github.com/steinj/acre, currently in prototype state) that instead
is focused on verifying the implementation of good code practices that can substantially

https://github.com/steinj/acre
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help code reviews. The tool is still under active development but it could be used to
conduct code-reviews on large portion of Geant4 code in a semi-automated way.
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A SimplifiedCalo settings used in TAU analysis

export PERFORMANCE=1
export PHYSLIST=EmPhysics
export EMPROCESS=EmStandard

/run/verbose 1
/event/verbose 0
/tracking/verbose 0
/gun/particle e-
/gun/energy 50 GeV
/mydet/absorberMaterial Copper
/mydet/activeMaterial Scintillator
/mydet/isUnitInLambda 0
/mydet/absorberTotalLength 7000
/mydet/calorimeterRadius 3000
/mydet/activeLayerNumber 100
/mydet/readoutLayerNumber 20
/mydet/activeLayerSize 4.0
/mydet/update
/run/beamOn 500
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